Overcoming chemo/radio-resistance of pancreatic cancer by inhibiting STAT3 signaling

نویسندگان

  • Xiaoqing Wu
  • Wenhua Tang
  • Rebecca T. Marquez
  • Ke Li
  • Chad A. Highfill
  • Fengtian He
  • Jiqin Lian
  • Jiayuh Lin
  • James R. Fuchs
  • Min Ji
  • Ling Li
  • Liang Xu
چکیده

Chemo/radio-therapy resistance to the deadly pancreatic cancer is mainly due to the failure to kill pancreatic cancer stem cells (CSCs). Signal transducer and activator of transcription 3 (STAT3) is activated in pancreatic CSCs and, therefore, may be a valid target for overcoming therapeutic resistance. Here we investigated the potential of STAT3 inhibition in sensitizing pancreatic cancer to chemo/radio-therapy. We found that the levels of nuclear pSTAT3 in pancreatic cancer correlated with advanced tumor grade and poor patient outcome. Liposomal delivery of a STAT3 inhibitor FLLL32 (Lip-FLLL32) inhibited STAT3 phosphorylation and STAT3 target genes in pancreatic cancer cells and tumors. Consequently, Lip-FLLL32 suppressed pancreatic cancer cell growth, and exhibited synergetic effects with gemcitabine and radiation treatment in vitro and in vivo. Furthermore, Lip-FLLL32 reduced ALDH1-positive CSC population and modulated several potential stem cell markers. These results demonstrate that Lip-FLLL32 suppresses pancreatic tumor growth and sensitizes pancreatic cancer cells to radiotherapy through inhibition of CSCs in a STAT3-dependent manner. By targeting pancreatic CSCs, Lip-FLLL32 provides a novel strategy for pancreatic cancer therapy via overcoming radioresistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling

Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenot...

متن کامل

Targeting Inflammatory Pathways by Dietary Agents For Prevention and Therapy of Cancer

Chronic infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and high-calorie diet have been recognized as major risk factors for the most common types of cancers. All these risk factors are linked to cancer through inflammation. While acute inflammation that persists for short-term mediates host defense against infections, chronic inflammation that lasts for long-term ca...

متن کامل

EGCG Enhances the Therapeutic Potential of Gemcitabine and CP690550 by Inhibiting STAT3 Signaling Pathway in Human Pancreatic Cancer

BACKGROUND Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogene, which promotes cell survival, proliferation, motility and progression in cancer cells. Targeting STAT3 signaling may lead to the development of novel therapeutic approaches for human cancers. Here, we examined the effects of epigallocathechin gallate (EGCG) on STAT3 signaling in pancreatic cancer cells, and as...

متن کامل

Combined blockade of Src kinase and epidermal growth factor receptor with gemcitabine overcomes STAT3-mediated resistance of inhibition of pancreatic tumor growth.

PURPOSE We previously established a mechanistic rationale for Src inhibition as a novel therapeutic target in pancreatic cancer and have identified activated STAT3 as a potential biomarker of resistance to Src inhibition. The purpose of this study was to translate the current understanding of complementary activated tyrosine kinase signaling pathways by targeting Src kinase and epidermal growth...

متن کامل

Acquired resistance of pancreatic cancer cells to treatment with gemcitabine and HER-inhibitors is accompanied by increased sensitivity to STAT3 inhibition

Drug-resistance is a major contributing factor for the poor prognosis in patients with pancreatic cancer. We have shown previously that the irreversible ErbB family blocker afatinib, is more effective than the reversible EGFR tyrosine kinase inhibitor erlotinib in inhibiting the growth of human pancreatic cancer cells. The aim of this study was to develop human pancreatic cancer cell (BxPc3) va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016